Laser Systems for PIV Applications

Laser system VM-2132PIV, VM-2145PIV-200, VM-2145PIV-300 are desinged for Partical Image Velocimetry (PIV) and other kinetic applications e. g. like Laser Induced Breakdown Spectroscopy (LIBS).

main features:

- small foot-print laser head design
- integrated one-body power supply and cooling system with water-to air heat exchanger
- output of two pulses with equivalent energy, beam quality
- precise tuning of two pulses delay from 1μs to 100ms using internal control
- any delay between pulses using external control and built-in TTL interface
- high stability and durability of the output parameters provided by special temperature control of nonlinear and Q-switched crystals as well as laser resonator special design
- built-in variable attenuator (option) of output energy
- internal probes of 1064nm energy (option)
- compatible with C-mount (option)

specifications:	VM-2132PIV	VM-2145PIV-200	VM-2145PIV-300
energy @532nm, mJ	2x 100	2x 200	2x 300
pulse duration (FWHM), ns	≤ 5	≤ 6-7	≤ 6-7
pulse repetition rate, Hz	20	15	10
beam divergence $(\Theta_{0.86})$, mrad	≤ 3	≤ 1.5	≤ 3
beam diameter, mm	≤ 5	≤ 6	≤ 8
delay between pulses	1µs-50ms	1µs-60ms	1µs-100ms
jitter, ns	±1.0	±1.5	±1.5
energy stability @532nm (rms), %	<1	<1	<1
polarization	linear horizontal	linear horizontal	linear horizontal

size LxWxH, mm (weight, kg)

laser head
 power supply incl. cooling system
 416x176x121 (10.0)
 462x234x125 (12.0)
 445x252x465 (25.0)
 445x252x465 (25.0)

input power requirements

single phase, universal input 100-240V, 50/60Hz, 15A@100V, 10A@220V

Laser Systems for LIBS Applications

Laser system VM-2132LIBS, VM-2134LIBS, VM-2136LIBS, VM-2145LIBS, are desinged for Laser Induced Breakdown Spectroscopy (LIBS) and other kinetic applications e. g. like Partical Image Velocimetry (PIV).

main features:

- compact Double Pulsed Laser (DPL)
- two independent laser resonators pumped by a single flash lamp integrated in one laser emitter
- multiple triggering: single-shot, contineous internal trigger, external TTL trigger
- output of two pulses with equivalent energy, polarization, and beam quality
- precise tuning of two pulses delay from 0µs to 80µs
- computor control via RS-232 port
- dual output ports for independent operation of both oscillators

specifications:	VM-2131LIBS	VM-2134LIBS	VM-2145LIBS	VM-2136LIBS-4	VM-2136LIBS-5
energy @1064nm, mJ @532nm, mJ	100 50	200 110	320 190	80 40	100 50
pulse duration (FWHM), ns	14-16	14-16	14-16	14-16	14-16
pulse repetition rate, Hz	15	10	10	50	50
beam divergence ($\Theta_{0.86}$), mrad	≤ 1.5	≤ 2.5	≤ 2.5	≤ 1	≤ 1
beam diameter, mm	≤ 4	≤ 6.3	≤ 6.3	≤ 4	≤ 5
delay between pulses (step 1µs, step 1ns as option)	0µs-80µs	0µs-80µs	0µs-80µs	0µs-80µs	0µs-80µs
jitter, ns	±1.0	±1.0	±1.0	±1.0	±1.0
energy stability @532nm (rms), %	±3.0	±3.0	±3.0	±3.0	±3.0

size LxWxH, mm (weight, kg)

 • laser head
 770x306x143 (21.0)
 770x306x143 (21.0)

 • power supply
 391x364x192 (16.5)
 446x449x177 (20.0)

 • cooling system
 391x364x280 (15.5)
 446x449x266 (23.0)

input power requirements

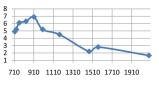
single phase, universal input 100-240V, 50/60Hz, 15A@100V, 10A@220V

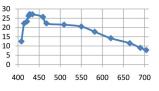
Nd:YAG-Lasers with Integrated OPO (210 ... 2300nm)

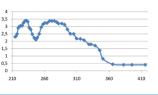
VM-2145-OPO is a Q-switched Nd:YAG laser with built-in midband optical parametric oscillator (OPO) providing conversion of Nd:YAG third harmonic (355 nm) radiation in to the tunable light of near IR and visible spectral range.

main features:

- independent output of all Nd:YAG laser harmonics (1064nm, 532nm, 355nm) as well as OPO radiation
- automatically switching of wavelength outputs
- PC control of laser parameters
- monitoring of Nd:YAG harmonics energy by built-in photo probes
- small divergence and narrow line width of OPO radiation
- polarizing separation of OPO signal and idler waves
- single BBO crystal for the whole tuning range
- an internally sealed water cycle cooling system with water-to-air heat exchanger




laser head with 1064nm, 532nm, 355nm, IW (710-2300nm), SW (400-710nm)


specifications: VM-2145OPO energy, mJ @1064nm 350 @532nm 230 85-90 @355nm @idler wave (IW), 710-2300nm, max 5 @signal wave (SW), 400-710nm, max 25 @SH OPO (SW+IW), 210-400nm, max 3 OPO linewidth (SW, 450nm), nm < 0.1 output pulse energy instability (rms), % @1064nm < 0.6 @532nm < 0.8 @355nm < 1 @idler wave (IW), 710-2300nm < 2.5 @signal wave (SW), 400-710nm < 2 pulse duration (FWHM), ns @1064nm ≤ 12-15 @OPO ≤ 8-10 pulse repetition rate, Hz 10 beam divergence ($\Theta_{0.86}$), mrad ≤ 1.0 @1064nm, 532nm, 355nm ≤ 1.5 @OPO beam diameter, mm ≤ 6 @1064nm, 532nm, 355nm ≤ 5 @OPO polarization horizontal @1064nm, 532nm, SW vertical @355nm, IW, SH OPO

module for SH OPO with 210-400nm

IW output pulse energy E@355nm = 82mJ

SW output pulse energy E@355nm = 82mJ

SH OPO output pulse energy E@355nm = 82mJ

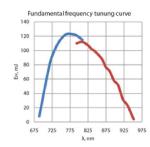
- laser head
- power supply
- cooling system
- SH OPO

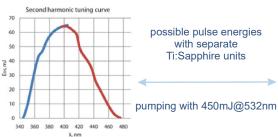
input power requirements

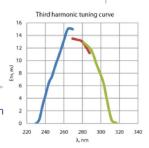
650x424x143 (28.0) 391x364x192 (18.0) 391x364x280 (16.0) 276x207x125 (5.0)

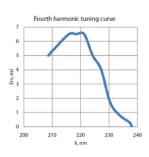
single phase, universal input 100-240V, 50/60Hz 15A@100V, 10A@220V

Nd:YAG-Lasers with Integrated Ti:Sapphire (210 ... 1000nm)


VM-2134TS50, VM-2145TS150, and VM-2149TS-DPSS are fully integrated laser systems that combine Q-switched pump laser and Ti: Sapphire converter of Nd:YAG second harmonic radiation (532 nm) into tunable near IR, UV and visible spectral band.


main features:


- possibility of independent operation of pump laser at 1064 and 532 nm as well as tunable lasing
- hands free operation and automatically switching output wavelengths
- built-in monitors of Nd:YAG FF and SH output energy
- built-in high effciency Ti:Sapphire second harmonic unit
- narrow output linewidth (option)
- PC control of pump laser and fundamental harmonics of Ti:Sapphire laser (option)



specifications:	VM-2134TS50	VM-2145TS150	VM-2149TS-DPSS
energy, mJ @1064nm @532nm @FF, 690-1000nm, max @SH, 350-500nm, max @TH, 235-325nm with HG-TF unit @FH, 210-235nm with HG-TF unit	350 230 50 20 by request by request	700 400 140 - - -	8 4 1.4 - - -
linewidth, nm	< 0.1	< 3.0	< 1.2
pulse duration (FWHM), ns @1064nm @Ti:Sa FF pulse repetition rate, Hz	≤ 12-15 ≤ 8-30	≤ 12-18 ≤ 8-30	≤ 12-15 ≤ 25-35 1000
beam divergence (⊕₀,೩๓), mrad @1064nm @Ti:Sa FF	≤ 1.0 ≤ 1.5	≤ 1.0 ≤ 1.5	≤ 1.5 ≤ 1.6
size LxWxH, mm (weight, kg) laser head power supply cooling system HG-TF unit	670x474x143 (25.0) 391x364x192 (18.0) 391x364x280 (16.0) 328x236x130 (6.0)	800x450x150 (68.0) 446x449x177 (19.0) 446x449x266 (20.0)	620x360x153 (23.0) 391x364x192 (18.0) 391x364x280 (16.0)
input power requirements	single phase universal input 100-240V, 50/60Hz 15A@100V, 10A@220V	single phase universal input 100-240V, 50/60Hz 15A@100V, 10A@220V	single phase universal input 100-240V, 50/60Hz 15A@100V, 10A@220V

Nd:YAG-Lasers with Integrated Forsterite (580...680, 1160...1360nm)

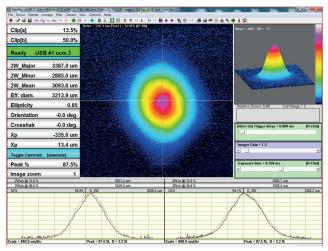
VM-2134F25 and VM-2134F15G are fully integrated laser systems that combine Q-switched pump laser and Forsterite crystal converter of Nd:YAG fundamental frequency (1064 nm) into tunable near IR and visible spectral band.

main features:

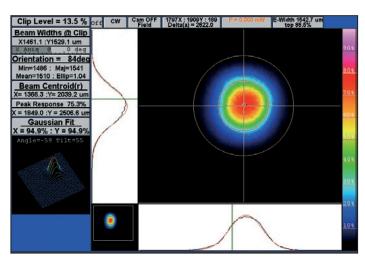
- possibility of independent operation of pump laser at 1064 and 532 nm as well as tunable lasing
- hands free operation and automatically switching output wavelengths
- built-in monitors of Nd:YAG FF and SH output energy
- built-in high effciency Forsterite second harmonic unit
- narrow output linewidth
- PC control of pump laser and fundamental harmonics of Forsterite laser (option)

specifications:	VM-2134F25 (prism tuning)	VM-2134F25 (grating tuning)
energy, mJ @1064nm @532nm @FF, 1160-1360nm, max @SH, 580-680nm, max	260 160 25 5.5	260 160 15 (1190-1300nm) 1.5 (595-650nm)
linewidth, nm	≤ 0.8	≤ 0.02
pulse duration (FWHM), ns @1064nm @Forsterite	10 10	10 10
pulse repetition rate, Hz	10	10
beam divergence ($\Theta_{0.86}$), mrad @1064nm @Forsterite	≤ 1.0 ≤ 1.5	≤ 1.0 ≤ 1.5
jitter@1064nm, rms, ns	±1.0	±1.0
beam diameter, mm @1064nm, @532nm @Forsterite	≤ 6.3 ≤ 3	≤ 6.3 ≤ 3
size LxWxH, mm (weight, kg) laser head power supply cooling system	670x474x143 (25.0) 391x364x192 (18.0) 391x364x280 (16.0)	670x474x143 (25.0) 391x364x192 (18.0) 391x364x280 (16.0)
input power requirements	single phase universal input 100-240V, 50/60Hz 15A@100V, 10A@220V	single phase universal input 100-240V, 50/60Hz 15A@100V, 10A@220V

Available standard Nd:YAG-Lasers


The possible available parameters of the Nd:YAG-lasers are given in the table below. The high pulse energy 1.4J@1064nm can be obtained with lamp pumping. The repetition rate with lamp pumping can be achieved up to 100 Hz, whereas the diode pumping (DPSS) allows the repetion rate up to 1kHz. The maximal standard pulse energy with diode pumping is up to 180mJ@1064nm. The shortest pulse duration is 70-80ps with the maximal pulse energy 75mJ@1064nm with lamp pumping.

In each laser we try to elaborate the best possible beam profile with the goal TEM00.


The separate parameters can be improved by request depending on applications. Double-pulsed system as well as tunable optical parametric generators are possible based on the available standard Nd:YAG-lasers.

possible specifications:		high repetition lamp pumped	DPSS 100Hz	DPSS 1kHz	ps lamp pumped
energy, mJ @1064nm @532nm @355nm @266nm @213nm	1400 700 300 180 40	180 100 40 25 5	180 100 50 25 5	8 4 2 1	75 35 15 15 3
pulse duration (FWHM), ns pulse repetition rate, Hz	10-12 10	10-12 100	11-12 100	12-15 1000	0.07-0.08 15

beam profile with DPSS

beam profile with lamp pumping

Variable attenuators

Nd:YAG laser line attenuators

Variable attenuators are used as continuously regulator of laser pulse energy. They include a $\lambda/2$ -waveplate and a thin film polarizer. Standard laser line attenuators are for 1064nm, 532nm, 355nm, 266nm. The attenuators for other wavelengths are possible by request.

	1064nm	532nm	355nm	266nm
clear aperture, mm	10	10	10	10
damage threshold, J/cm²	8	5	2	1
attenuation range, %	5-95	5-95	10-90	20-80

broadband laser attenuators

Broadband variable attenuators are designed for attenuation of laser radiation in spectral range 210-1500 nm. The attenuator modules are compact accessories that accurately set the energy transmitted while keeping the laser running under its most stable conditions. The principle of operation is based on the dependence of glass plate transmission from incidence angle of light as well as beam polarization. The main advantage of reflectance type attenuator is the absence of the sensitivity from operation wavelength and high laser damage (>1GW/cm²). It could be used for pulsed as well as CW lasers. The attenuators have two defined positions. The first one provides smooth decreasing of the laser radiation with horizontal polarization from 100% down to 35% (p-polarization) and attenuation of the laser light with vertical polarization from 50% down to 1% (s-polarization). The second one does vice versa.

clear aperture, mm	8
damage threshold, J/cm ²	10
attenuation range, %	100-35 p-polarization 50-1 s-polarization
wavelength range, nm	450-1500 210-1300

KD*P Pockels cells

Pockels cells

The PC-series of KD*P longitudinal Pockels cells have been designed to give highest possible switching times and are normally used for Q-switching lasers. The cells are manufactured from crystals that have been specially selected for their low optical loss and strain free properties. They can be used in optical range 0.4-1.1 mm and normally have AR coating at customer specified wavelength. The crystals are set in temperature-stabilized mounts, which accurately maintain the maximum contrast ratio without adjustment of bias voltage and prevent surface degradation by humidity. KD*P crystals with wedge and Brewster angle surfaces are available on request.

	PC-8	PC-10	PC-15
clear aperture, mm	8x8	10x10	15x15
half-wave voltage, @1064nm, kV	6.7-7.5	6.7-7.5	6.7-7.5
maximal voltage, kV	8.0	8.0	10.0
crystal length, mm	16	20	30
damage threshold, MW/cm² with AR coating without AR coating	400 500	400 500	400 500
single pass insertion loss, %	≤4	≤4	≤5

Pockels cell drivers

	PCD-6601 λ/4 driver for DKDP Q-switch	PCD-0902	SPS-6621 λ/4 intracavity single pulse selector	ICS-6603 λ/4 driver for DKDP Q-switch	
supply voltage, V	18-30	18-30	18-30	18-30	
max. current, mA	180	180	180	180	
bias voltage, kV	3.55.0	0	3.55.0	3.55.0	
pulse amplitude, kV	-3.55.0	±3.55.0	-3.55.0	-3.55.0	
rise time, ns	<10	<10	<10	<10	
pulse duration (flat top), ns	1000	1000	1000	triggering pulse	
jitter, ns	<±1	<±1	<±1	<±1	
pulse delay with respect to trigger, ns	20	20	2040 variable	20	
trigger pulse amplitude	TTL	TTL	photodiode	TTL	
dimensions, mm	95x60x31	95x60x31	120x60x31	120x60x31	

Crystal oven for non-linear crystals

Crystal oven is designed for heating and temperature stabilization of nonlinear crystals. The oven is finished with driver, which can supply two thermostats with different temperatures simultaneously. Special adjustable holder is available.

On special request crystal ovens for large crystals are available.

specifications:

stabilized temperature range

long term stability

operating voltage

max. current

max. dimensions of non-linear crystal

size of crystal oven

size of driver

operating regtime

up to 80°C

±0.1°C

18-24V, DC

separate power supply is upon request providing powering from 110 V, 220 V AC mains at a choice

0.8A max 0.1A in stabilization mode

12x12x34mm

48x40x34mm

47x37x18mm

CW